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RELATIVISTIC MODELS OF THE UNIVERSE 

WITH PRESSURE EQUAL TO ZERO AND 

TIME -DEPENDENT UNIFORMITY 

By Windsor L. Sherman and Sylvia A. Wallace 
Langley Research Center 

SUMMARY 

The previous work on the zero-density and approximate models of the universe, 
published in NASA TN D-2601 and TN D-3047, is summarized. 
is improved so that it is a useful approximation of the exact model to greater values of 
the red shift, and regions of applicability of the approximate model a r e  determined. 
Regions where closed-form solutions of the exact model exist, other than zero-density 
and zero-cosmical-constant models, are defined and the solutions are given. 
of calculations a r e  presented that indicate, for the data considered, all the models, sim- 
plified and exact, appear to f i t  the data equally well even though there is wide variation 
in the density and acceleration parameters. In addition, the results of the calculations 
indicate that density and acceleration parameters should be determined as a pair from 
observational data. It is concluded that data consistent with that for galaxies at red 
shifts greater than one-half are required before a model universe can be selected and a 
simplified model defined. 

The zero-density model 

The results 

INTRODUCTION 

One of the uses  of the theory of model universes is the analysis of observational 
data to obtain an indication of the structure of the universe and how the universe has 
evolved. There a r e  several theories of gravitation that provide theories of model uni- 
verses.  
general relativity. The key assumptions made are that the m'odels have time-dependent 
uniformity and that the pressure is low enough to be assumed negligible when compared 
with the density term. 
sure  and time uniformity are derived. The exact equations contain elliptic integrals and 
therefore cannot, in general, be integrated to obtain analytic solutions. 
simplified models, presented in references 1 and 2, is discussed and additional material 
relative to these models and their use is included. (Appendix A gives the regions of 
usefulness of the approximate model.) In addition t o  the zero-density and approximate 

The discussion in this paper is limited to models of the universe based on 

The exact equations for the relativistic models with zero pres- 

The use of the 
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models and those models in  which the cosmical constant is zero, there  are other models 
that have solutions in  te rms  of simple functions. McVittie (ref. 3) has discussed these 
models from the point of view of special solutions of the elliptic integrals. In this paper, 
an algebraic approach is used that permits the establishment of the combinations of the 
density and acceleration parameters that give additional simple function solutions. 

The differences between the meaningful simplified models and the exact models 
are discussed, and the results of calculations with the various models to determine the 
density and acceleration parameters are compared. Appendix B lists the symbols used 
in  the analysis. 

The 
dependent 

RELATIVISTIC MODEL UNIVERSES 

space-time metric for relativistic models of the universe that have time- 
uniformity is 

ds2 = dt 2 - R2(t) d r2  + r2de2 + r2sin28d@2 
C2 

where ds  has the dimensions of time along the line element; c is the speed of light 
in  vacuo; t is time; r, 8, and @ a r e  the dimensionless coordinates of a point in the 
metric subspace; k is the curvature constant; and R is the scale factor that describes 
the geometrical history of the universe and has the dimensions of length. The relation 
between the space time of experience, the metric space, and the physical content of space 
time is provided by the field equations of general relativity: 

where E P v  is the contracted Riemann-Christoffel tensor; E, the curvature scalar;  
gpv, the metrical tensor; 

the universal constant of gravitation. The material energy tensor T P v  is defined as 

A, the cosmical constant; K is a constant = s, and G is 
C 2  

for a single stream isotropic fluid. In equation (3), p and p a r e  the density and 

pressure, respectively, and Vp = - &'. The subscripts p and v appearing in equa- ds  
tions (2) and (3) a r e  the usual tensor indices and can assume values 0 to 3. 

The field equations (eq. (2)) a r e  written with the cosmical constant. Einstein's 
original formulation was 
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The cosmical constant was introduced by Einstein in reference 4 in  order to obtain a 
stationary model universe which at that time w a s  indicated by observation. After obser- 
vation had established the expansion of the universe and it had been shown that expanding 
universe solutions existed for A = 0 as well as A # 0 (ref. 5), Einstein discontinued 
the use of the cosmical constant on the grounds of logical economy (ref. 6) and maintained 
this view through his last discussion of the question (ref. 7). 
cal constant is not as simple as the foregoing discussion would indicate, and Einstein him- 
self was not consistent in his use or rejection of the cosmical constant. When working 
with the electromagnetic field (ref. a), Einstein found and used the cosmical constant as 
"a constant of integration," whereas when working with the ponderable matter field, he 
regarded it as a constant peculiar to the theory. Weyl (ref. 9) presents a rigorous math- 
ematical derivation of the field equations and shows that the cosmical constant is a neces- 
sary  term in the field equations. McVittie (ref. 10) and Heckmann (ref. 11) both support 
the retention of the cosmical constant on mathematical grounds. Because the mathemat- 
ical evidence indicates that the cosmical constant is a necessary term in the field equa- 
tions and the rejection of this term seriously limits the generality of the theory of rela- 
tivity, the cosmical constant is retained in this study. 

The question of the cosmi- 

The substitution of equations (1) and (3) into equation (2) and carrying out the 
indicated operations gives the well-known form of the Einstein field equations for an 
isotropic homogeneous universe 

+ - + K p = - -  kc2 + A - 2R R2 
R2 R2 

2 R2  KC^^ - kc & 
R2 R2 
- -  

where R is the scale factor of the universe and the dots over the symbols indicate dif- 
ferentiation with respect to time. The solutions R(t) of these differential equations 
describe the geometrical history of the universe. There a r e  many possible solutions of 
equations (5), but it is required that the solutions have physical significance. Since 
observation indicates the presence of matter and radiation in the universe, only those 
sets  of k, A, and R that give p 2 0 and p 2 0 are of interest. 

An examination of equations (5) shows that A has the dimensions of sec-2. The 
cosmical constant can be greater than, less  than, or equal to zero. When A is less  
than zero, it represents an acceleration term that acts in conjunction with gravity forces 
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to retard expansion. When A is greater than 0, it represents an acceleration that 
opposes that of gravity in the retardation of the expansion of the universe. 

Like A, k can be greater than, less than, or equal to zero. The sign of k 
determines the type of space that is being considered. For  k > 0, the space is spherical; 
for k < 0, the space is hyperbolic; and for  k = 0, the space is Euclidean. In the deriva- 
tion of equations (5), k was adjusted so that it can be considered a space-curvature 
constant that can assume a value of 1, -1, or 0. j 

1 

In equations (5) p and p a r e  functions of time; thus, equations (5) a r e  not deter- 
minate since three unknowns must be determined from two equations. Solutions to equa- 
tions (5) can be obtained only if some assumption is made with regard to p and p. 
Before such an assumption is made, however, it is of interest to look at the magnitudes 
of the density and pressure terms. The pressure is composed of two terms, one due to 
matter and the other due to radiation. In a low-density fluid the pressure due to mate- 
rial density is given by two-thirds of the energy density due to random motions which 
reduces to povo2 where vo is the random radial velocity. The expression for total 

pressure can now be written as p = povo2 + $ where po is the material density, 
" 

a = 7.564 x 10-15, and T is the radiation temperature in degrees Kelvin. The term 
aT4/3 is the radiation pressure.  A good value for po, based on observation, is 
10-30 g/cm3. 
rately determined but is probably less  than 3 X lo7 cm/sec (ref. 14). 
po and vo give a pressure due to material density on the order of The radia- 
tion temperature of intergalactic space, for the present epoch, is about 3O K (refs. 15 
and 16) and corresponds to a radiation pressure on the order of These results 
indicate that for the present epoch, radiation pressure dominates the pressure term. 

due to matter) and the density equivalent of radiation (that is, aT4/c2). For a radiation 
temperature of 3 O  K the density equivalent of radiation is on the order of 
smaller by a factor of lo3 than the density due to matter. 

(See refs. 12 and 13.) The random radial velocity has not been accu- 
These values of 

Density is also composed of two terms, the material density (that is, the density 

and thus 

From equations (5) the relation between pressure and density is 

dt 

p dR3 This equation can be written as R3 * + p + - - e 0. The results of the analysis 
dt ( .2) dt 

of density and pressure for  the present epoch, when applied to the coefficient of dR3/dt, 
indicate that p/c2 will be less  than p by a factor of lo3; thus, pressure can be 
assumed to make a negligible contribution to the value of dR3/dt when compared with 
density. Thus, in the models of the universe discussed herein, the pressure is assumed 

4 



to be zero. As a consequence of the assumption of zero pressure, integration of equa- 
tion (6) gives pR3 = Constant = p0RO3 and gives density as function of R and 

Ro, p = ( . r p o .  The subscript o indicates present values of p and R. 

Under the assumption of zero pressure, equations (5) become 

2 2 

R2 R2 
- 2 R + L =  kc + A  

Equations (7) a r e  the equations that are used in the development of model uni- 
verses. When equations (7) a r e  written for the present epoch and the following defini- 
tions are substituted 

.. 
2 - _  Ro - -qoHo 

RO 

4SGPO 
Do = - 

3HO2 

it is found that 

where the density parameter uo and acceleration parameter go a r e  pure numbers and 
the Hubble parameter Ho has dimensions of sec-1. Jf a,, q,, and Ho can be deter- 
mined from observation, equations (8) and (9) can be used to determine the type of space 
curvature and the value of the cosmical constant. If the curvature constant and cosmical 
constant a r e  known, the type of model universe can be determined. For zero-pressure 
models, the models that correspond to k = *l or 0 for A 2 0 can be determined from 
equation (7b) without reference to uo and go. 

To determine R(t) for the various combinations of k and A, equation (7b) is 
solved for time; the solution yields 



1 

to - t =s, RO R1I2dR 

R3 - kc2R + 2HO2aoRo3 

and the inversion of the time solution gives R(t). 
tion (10) is carried out, the solution is in te rms  of elliptic functions. However, study of 
the cubic in equation (10) provides information on the behavior of R in different models. 
This type of analysis has been made by both Robertson (ref. 17) and Bondi (ref. 18), and 
table I summarizes the results of these studies for model universes in which p > 0 and 

If the integration indicated in equa- 

p = 0. 

The material presented in table I is self-explanatory for k = -1 and 0 and k = 1, 
A 5 0 since for a given combination of k and A, only one type of model universe is 
possible. When k = 1 and A > 0, six different models of the universe can occur. The 
specific model depends on whether A is greater than, equal to, or less  than a specific 
value called the critical value (designated A,). If the cubic in equation (10) is set  equal 
to zero and solved for A, it is found that 

2 3  
A = - -  3kc2 6Ho Ro Oo 

R2 R3 
and the critical value is that value of A for which dA/dR = 0 is given by 

The value of R associated with A, called Re is given by 

If A > Re > 0, the model is Le Maitre's model (indicated as model 9 in table I). When 
A = A,, three different models a r e  possible. The model in this case depends on the 
relationship of Ro to Re. When Ro < Re (model 12), a model that expands asymptot- 
ically from R = 0 to R = Re occurs; when Ro = Re, the Einstein static model 
(model 10) is indicated; and when Ro > Re, the Eddington-LeMaitre model (model 11) is 
the model that would represent the universe. When A < A,, the cubic has two roots, 
R1 and R2, R1 < R2; when Ro < R1, then model 13 occurs; and when R2 5 Ro, the 
model is model 14. 

Some interesting points about the models of the universe a r e  shown in table I. In 
most cases  a singular point at R = t = 0 indicates that expansion started from a zero 
radius. This singular point is purely mathematical and the theory of model universes 
does not provide information concerning the physical state of the universe. There is 
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A < O  

A = O  

A < O  

A = O  

A > O  

A < O  

TABLE I.- SUMMARY OF MODEL UNIVERSES 

Oscillating 

Expanding 

Expanding 

Oscillating 

Expanding 

Expanding 

Oscillating 

k = O  

Rh t 

RY t 

3 

4 

5 

6 

k =  1 
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TABLE 1.- SUMMARY OF MODEL UNIVERSES - Concluded 

Model 

8 

9 

Type 
~ 

___. 

Oscillating A = Q  

__._ .. . ~ 

Expanding 
Le Maitre’s 
model 

. -. -. 

Stationary 
Einstein’s 
model 

10 

11 

12 

13 

14 

A =  A, 

R /  

R, = Re 

-- t . _. 

._ . ~~ .. .. . - 
Expanding 

Eddington- Le Maitre 
model 

I t  
- .- 

Expanding R I  
- .. .. 

Oscillating 

_ -  _ .  -. I 

Oscillating 
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some indication (ref. 3) that the singularity may have been introduced by the assumption 
of zero pressure, and if a finite pressure model is considered, R > 0 at t = 0. The 
other point of interest concerns the models of the universe in which A = 0. When 
A = 0, equation (10) can be integrated by simple functions and the properties of the A = 0 
models a r e  given by simple analytical expressions. However, by equation (8) uo must 
be equal to qo where A = 0. This condition is most restrictive; in addition to 
requiring the equality of uo and go, the universe cannot be accelerating. Accelera- 
tion requires negative qo and negative q, gives negative density; the A = 0 models 
and negative density cannot exist in the physical universe. The mathematical simplicity 
of A = 0 is most attractive; however, the restrictive nature of the assumption lends 
support to the mathematical reasons previously cited for retaining A in the field equa- 
tions. If A is actually zero, the analysis of observational data will show this condition 
and firm justification will exist for setting A = 0. 

Connection Between Theory and Observation 

The classes of observational data that can be used to determine a model of the 
universe a r e  apparent magnitude, red shift, angular diameter, and number counts. 
isophotal diameter is not considered because of difficulties associated with its use. 
ref. 14.) In order to determine a model of the universe from observational data, it is 

I I necessary to write down an equation that expresses a relation of two or more of the 
I classes of observational data as a function of oo and q,. From this equation, expres- 

sions relating apparent magnitude and red shift, angular diameter and red shift, and num- 
ber  counts and red shift have resulted. These relationships, in  their most general form, 
are: 

The 
(See 

Between red shift and apparent magni.tude (refs. 1 and 3): 

m - K = 5 log Ro(l -I- z)S(w) + Mo + AMo - 5 

Between angular diameter and red shift (ref. 19): 
((1 + z) 
R,S(w) 

@ =  

Between number of galaxies and red shift (refs. 19 and 20): 

where 

m 

K 

3 2TfnR0 

(-WQ 
N(m) = (sinh J-kw cosh\I-i;w - G w )  

apparent magnitude 

red-shift correction 
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Z red shift 

MO absolute magnitude of equivalent local source 

AM0 evolutionary correction to Mo 

6 angular diameter 
'I 

c linear diameter 

N(m) number of like sources brighter than a given magnitude 

n number of like sources per  unit volume 

Q number of square degrees in the celestial sphere 

Equation (14) is the red-shift-magnitude relation and the argument of the log term 
Ro(l + z)S(w) is the luminosity distance Dz, the distance that light travels from the 
source to the observer. Equation (15) is the angular-diameter-red-shift relation and 
the denominator of the right-hand side RoS(w) is the distance by measuring rod Dc. 
Equation (16) is the number count relation and, as indicated in reference 21, it is not too 
useful with presently available data. 

An inspection of equations (14), (15), and (16) shows that Ro, 0, and S(w) a r e  
functions of the radial metric variable r of equation (l), and they need to be expressed 
as functions of ao7 qo7 and z in order to make the equations useful for the analysis 
of observational data. Equation (9) gives Ro as a function of a, and q,. The vari- 
able w and the function S(o) can be obtained from equations (1) and (7) as functions 
of ao, q,, and z. 

Equation (1) is first rewritten with the aid of the transformation 

R0r sinh \J-kw = 
R O  < = -  

kr2 
4 

\I-k 1+-  

so that the metric (eq. (1)) becomes 

If the coordinates are chosen so that the origin is at the observer, by spherical symmetry 
8 and 6 a r e  constants for any given light ray. The coordinates a r e  so adjusted that 

10 



6 = c$ = 0. 
be  written as 

Light travels along a null geodesic and ds2 = 0; thus, equation (18) can now 

c = =  dt d5 

Differentiation of equation (17) gives 

3 If this definition of dw is used, equation (19) can now be written as 

and integrating yields 

From equation (20), 

and 

and 

1 S(w) = - sinh \I-kw 
G 

dt 
RR 

Through the use of equation of uo, and the relation between p 

po for zero pressure , equation (21b) can be written as 

Equ .tion (22) can be expressed in the te rms  of uo, q,, and the red shift z through 
the use of equations (8) and (9) and the relation Ro/R = 1 + z. 
written 

Equation (22) can now be 

11 



IIIII I I 1111l1ll1ll tl 

Equations (14) to (16) can now be expressed in te rms  of oo, go, Ho, and z by the use 
of equations (9), (Zla), and (23). 

Ir 
Integrations To Obtain w t 

I1 

I 

Equation (23) is an elliptic integral and cannot, in general, be integrated in te rms  
of simple functions. 
gration of equation (23) in te rms  of simple functions. The first is to assume that the 
cubic has two equal roots; the denominator then reduces to (z - b ) d n  and can be 
integrated. The two equal roots can occur only for specific values of oo and q,, and 
for this reason, is of very limited usefulness. However, one of the cases of two equal 
roots gives the solutions for the A = 0 models. A second approach is to assume that 
density is zero. 
can be integrated directly. 
mathematical point of view, but, when used, it is assumed that the density of the universe 
is so  small that the physical situation existing in the universe can be approximated by the 
zero-density model. The alternative approach to those already suggested seeks to obtain 
a mathematical approximation for equation (23). Such an approximation occurs when the 
te rm 200z3 in the cubic can be neglected with respect to the other terms in the equation. 

There a r e  certain assumptions which, when made, permit the inte- 

The assumption of zero density reduces the cubic to a quadratic which 
The solutions for the zero-density models a re  exact from a 

Methods for integrating equation - (23).- If equation (23) is written in the form 

dz Z 

i(z - a)(z - p)(z - q) 

it can be integrated by the methods given in standard texts on elliptic integrals. 
solutions, in general, provide only numerical answers once the roots a re  known, and thus 
imply that uo and go a r e  known. The alternative is to integrate equation (23) by 
numerical methods on a digital computer. In the problem of analysis of observational 
data, oo and q, a r e  the unknown quantities, and expressions for w of the form 
w = f(uo,qo,z) a r e  more useful. 

In the first, A # 0 and in the second, A = 0. In the first case A .Z 0, the variable w 
is given by 

Such 

Two equal roots.- There a r e  two separate cases  when there are two equal roots. 

C f Z  dz 

12 



which for k = 1 integrates to 

r- 1 

The necessary condition for these solutions to exist is given by 
.I 

2 3u0 - (go + 1p - 27u0 ( oo - qo) = 0 

These pairs of uo and q, that satisfy equation (27) a r e  shown in figure 1 for 
-4.0 5 go 5 6.0 and 0 5 uo S 2.0. The solutions for w correspond to models with 
k = &l. The solutions for k = 0 models a r e  points and occur when uo = q, = 0.5 and 
uo = 0, 
expressions a re  required for w. One of these points u0 = go = 0.5 belongs with the 
A = 0 models and is discussed later.  The second point oo = 0, go = -1.0 is on the 
curve for negative q, in figure 1. The w for this point is given by 

q, = -1.0. Equations (25) and (26) do not apply at these points and special 

-41 I I I I I I I I I I 

00 

0 .2 4 .6 .8 I .o 1.2 I 4 I .6 I .8 2.0 

Figure 1.- Combinations of t h e  density and acceleration parameters, oo and qo, that  satisfy the  
conditions for the  integration of equation (27). 
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In the second case A = 0, where equal roots exist, w is given by 

dz w =  
i 

(29) ! 
ii I 

and the necessary condition for the solutions to be valid is that uo = q,; by equation (8) 
this relationship corresponds to A = 0. In the case of A = 0 models, w is obtained 
in a more usable form i f  A is set to zero in equation (22) and then integrated as w a s  
done by Mattig (ref. 22). The resulting w equations a r e  for k = 1, )r 

I 

2 2 
C - 1] - cos-l( (30) r 

- i )  2 2  
Ho Ro 00 

w = cos 

for k = 0, 

2 
w =  /Ho 2 2  :I u0 - {Ho 2 2  R:'o(l + Z) 

and, for k = -1, 

When A = 0, k = 0 only when q, = 0.5. In A = 0 models, q, must be positive o r  
equal to zero since negative q, oo < 0); and since 
objects (galaxies, quasi-stellar radio sources) exist in the universe, the density and con- 
sequently uo cannot be negative. In both cases  of two equal roots A # 0 and A = 0, 
equation (9) is used to determine k and, consequently, determine the form of w 
to be used. 

would give negative density (that is, 

Equations (25), (26), (28), and (30) to (32) represent exact solutions for w and 
impose a severe restraint on the relation between oo and q,. In both cases, oo # q, 
and oo = q,, it is necessary for oo and q, to have a relationship that comes solely 
from the mathematics of the problem and is not a result of observation or  the physics of 
the problem. 

The zero-density model.- - .  - - Observational results (ref. 16) indicate that the density 
g/cm3. This level of density means that oo of the universe is probably close to 

is about 0.05, and for z < 1.0 the te rms  involving oo will contribute little to the cubic 
in  equation (23). It is therefore interesting to investigate the zero-density models, which 
a r e  exact mathematical models, as approximations for a very low-density universe. 
When oo is set  equal to zero, equation (23) becomes 

14 



Figure 2 compares the quantity wHoR0/c as calcu- 
12- 

Po lated by equations (23) and (33). 

integral to be determined. The differences between the 8- 

The use  of wHoR0/c 
-€ lac ! .  : 008 , - .5 permits the effect of the zero-density assumption on the 10- - - -Zerodensly.  mo*O 

exact and zero-density models a r e  small to z = 1.0 
for qo = 0.5 and decrease with increasing q,. For 

‘I 

u R . H .  6. 

\ z > 1.0, the differences increase. This increase occurs 
because the te rms  involving density are z2 and z 3 

and the contribution of these te rms  to the cubic in  equa- 
tion (23) builds up very quickly above z = 1.0. The 
good agreement obtained between wHoRo/c for the 
exact and zero-density solutions indicates that for  low 
density, the zero-density model could be used in place 
of the exact model. When a simple model is used to 
replace a more complicated exact model, it is always 
good to have some idea of the differences between the simple and exact model. System- 
atic calculations with the exact and zero-density solutions showed that if  the following 

Figure 2.- Differences in u* for the exact 
f in i te  density and zero-density models of the 
universe. (Eqs. (23) and (33).) 

inequality w a s  satisfied 
uo S 0.075q0(q, - 1) + 0.1 (34) 

the difference in wH0Ro/c for the exact and zero-density solutions would be 2 percent 
o r  l e s s  at z = 1.0. 

Integration of equation (33) gives a general solution for 0 which is 

and S(w) is givenby 

S(0) = HoRoqo “ - ( l + z (  

As shown in figures 3 and 4, the agreement between the exact and zero-density 
solutions for 0 and S(o) is poor compared with the agreement for the corresponding 
solutions for WH,R,/C. 

15 
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F igure 3.- Differences in w f o r  the exact f in i te  density and zero-density 
models of t he  universe. (Eqs. (23) and (35).) 

Both w and S(w) (see eqs. (23), (35), and (36)) a re  multiplied by a coefficient 
that contains l/Ro. In reference 1 it was  shown that the assumption of zero density 
introduced large differences in Ro. In addition to the differences in the integral, which 
were found to be small (see fig. 2), the only term that can introduce additional differ- 
ences, such as those shown in figures 3 and 4 as compared with figure 2, is Ro. 
relation suggests that if  the zero-density result is multiplied by Ro for the zero- 

density model and divided by Ro 
models should approach the differences shown in figure 2. Accordingly, w* and S*(w) 
to replace w and S(w), respectively, of the zero-density model a re  defined as follows: 

This 

for the exact model, the differences between the two 

16 
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I I I I I I I 
4 .8 I .2 I .6 2.0 2.4 28 

Z 

Figure 4.- Differences in S(w) for  the exact f in i te  density and zero-density 
models of t h e  universe. (Eqs. (Zla), (B), and (36).) 

where the subscripts d and e stand for the zero density and exact models, respec- 
tively. As shown in figures 5 and 6, the differences between w* and w and between 
S*(w) and S(w), where w and S(w) a r e  for the exact model, approach the differ- 
ences found for wH0Ro/c. 

The use of w* and S*(w) is required only when it is desired to investigate the 
variables by themselves or when w and S(w) a r e  substituted in an equation that does 
not cancel the l/Ro term that is introducing the large differences. 
tions (14) and (15), S*(w) should not be used, whereas in equation (16) w* and S*(w) 

Therefore, in equa- 
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- Exact, cro = 0.08 40 
2.5 

.5 

! 

w 
or 
w* 

I 
2.8 

z z 
Figure 5.- Differences in w or w* for the exact f in i te  Figure 6.- Differences in Slw) or  S*(w) tor  the exact f i n i t e  

density and modified zero-density models of the universe. 
(Eqs. (21a1, (B),  and (38j.1 

density and modified zero-density models of the universe. 
(Eqs. (B1 and (371.1 

should be used. Lastly, it should be noted that the use of w* and S*(o) requires that 
an estimate of the average density of the universe be available. 

If the zero-density model is to be used for the analysis of observational data, the 
k and A associated with the zero-density model must have the same signs as the k 
and A of the nonzero-density model as long as oo = go. This requirement means that 
zero-density models cannot be used for the analysis of observational data unless the fol- 
lowing conditions in the observed universe are present: For go > 0, the zero-density 
model can be used if go > Do and go + 1 > 30,; for  -1 < q, < 0, i f  1 > 30, - go; for 
q, < -1, i f  there is no restriction on go. 

Approximate model solutions _ _  _ -  for o. The results shown in figure 3 for wHoRo/c 
indicate that the integral in equation (23) is very little affected by oo. Therefore, an 
investigation was  made of the effect of assuming that for small oo and z 5 1, the te rm 
Z0,z3 makes a negligible contribution to the cubic in equation (23). This assumption is 
attractive because the only differences introduced are in the integral wHoR0/c, because 
Ro is not affected, and because the resulting solutions permit the determination of a, 

18 



from observational data. When it is assumed that 2oOz3 is a term that makes a neg- 
ligible contribution to the cubic in equation (23), equation (23) becomes 

dz Z 

J(3C0 + q, + 1)z 
(39) . 

Figure 7 compares the wH,R0/c obtained from equation (23) and from equation (39). 
As can be seen, the difference between the solutions is practically nonexistent out to 
z = 1. 

1% 

Exact, q, = 0.08 
Approximate, uo = 0.08 

Figure 7.- Differences in for  t h e  exact and approximate f in i te  density models 
of the universe. (Eqs. (23) and (39).) 

The integration of equation (39) for w gives 
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and substitution into equation (21a) for  S(w) gives 

Figures 8 and 9 compare the w and S(w) for the exact and approximate models. 
The exact solutions for w and S(w) are given by equations (23) and (21a), and the 
approximate solutions by equations (40) and (41). The differences in w and S(w) for  
the exact and approximate models a r e  small, on the order of those found for  oHoR0/c. 

I 

A s  indicated in figures 7 to 9, this approximate solution for w and S(w) has 
been checked for oo = 0.08, and q, = 0.5 and 2.5. Charts a r e  given in appendix A that 

show the uo and q, combinations that give a 2- and 4-percent e r r o r  in this approxi- 
mation for w. 

r i.6 

___Exact, m0 = 0.08 I t  Approximote, q, = 0.08 

"0 .8 1.2 

40 
2.5 

.5 

-2 
28 

Figure 8.- Differences i n  w for the exact and approximate finite density 
models of the universe. (Eqs. (23) and (4N.I 
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__Exact. cb.O.08 
- - - Appmrimote. q, = 0 08 

Figure 9.- Differences i n  S(w) for the exact and approximate finite 
density models of the universe. (Eqs. (21a), (231, and (411.) 

Another method to obtain an approximation fo r  w is to expand the integral in 

This form of the red-shift-magnitude relation, called the expansion 
a McLaurin ser ies  about z = 0 and then expand the expression for S(w) in an appro- 
priate series.  
form, has been extensively studied (see ref. 15), and the red-shift-magnitude relation 
using this approach is 

This relation is restricted by assumptions made in its development to small values of 2, 

that is, z << 1. Sherman (ref. 1) and Mattig (ref. 22) have compared this form of the 
red-shift-magnitude relation with the zero-density and A = 0 red-shift-magnitude 
relations and found differences of 1.8 magnitude and 0.4 magnitude, respectively. As 
the zero-density model and the A = 0 model a r e  special solutions of the exact case, 
there is no reason to expect better agreement between the exact and the expansion model 
than has been demonstrated in the special cases. 

The Scale Factor and Time Equations 

There is other information that can be obtained from the model universe. This 
information is the scale factor, time of light travel, and time since the beginning of 
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expansion. 
time since the beginning of expansion. 

Equation (7b) is integrated to obtain either the time of light travel or  the 

The starting point for these calculations is equation (10) which is equation (7b) in 
integral form. Equation (10) in the form 

(43) 
(1 + z)[2uoz3 + (30,  + q, 

to - t = Ho 

is used to determine the time of light travel and in  the form 

is used to determine the time since the beginning of expansion. In equation (44), T is 
the time since the beginning of expansion and y = - R 

RO' 

Time of Light Travel 

Equation (43) is integrated to  obtain the time of light travel. The solution to equa- 
tion (43) is of the form to - t = f(R). 
factor R = h (to - t). 

This solution is then inverted to give the scale 

The case of two equal roots.- The cubic in equation (43) has equal roots for certain 
combinations of uo and q, when A J; 0 and always when A = 0. When A f 0 and 
the cubic has two equal roots, equation (43) becomes 

-1 
H O  dz to - t = - loZ 
d2oo (1 + .)(. + %LJ(zEiqa 

(4 5) 

This integral may be written in the form 

(46) 
and in this form the equation for to - t can be easily integrated by standard formulas. 
The integrals in equation (45) or (46) give to - t only when u0 and q, satisfy the 

2 condition [3u0 - (go + ll3 - 27u0 (uo - go) = 0. Figure 2 shows a plot of the values of 
qo. and uo that satisfy this condition. In the case of to - t, the expression resulting 
from the integration of equation (46) is not as simple as it was for o and, in  general, 
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will  consist of two inverse tangent functions, o r  two logarithmic functions, o r  a combina- 
tion of inverse tangent and logarithmic functions. There are 11 possible combinations of 
these functions and the specific combination depends on the a. and qo used in the 
integration of equation (46). Because of the many different conditions that would have to 
be covered and the highly restricted nature of the solutions, the integration of equa- 
tion (46) is not presented in detail. However, it is easily integrated by using the stan- 
dard formulas. The second case of two equal roots occurs when A = 0. When A = 0 ,  
two roots are equal and equation (43) becomes 

-1 
(47) HO dz t o - t = -  

\12q, LZ (1 + . ) 2 p -  2qo 

and the necessary condition is that uo = q,. In this case it is simple to use equation (10) 
with A = 0 to obtain 

fi dR 

(2H02R03qo - kc2R)1/2 
t o - t =  

Because of difficulties that arise when inverting the solution of equation (48) to obtain 
the scale factor, it is convenient to  introduce the dummy variable 
for k = -1 o r  1. When k = 0, the inversion of the integration of equation (48) presents 
no difficulties. When k = -1, the substitution 

when k = 1, the substitution 

gration of equation (48) for k = -1 and k = 1 by using the substitutions, and the 
direct integration when k = 0 a r e  as follows: 

( when integrating 

R = sinh2( is used and c2 

2Ho Ro qo 
R = sin2( is used. The results of the inte- .2 

2Ho Ro 40 2 3  

, Fosh(SO + <)sinh(c0 - <) + < - t o - t =  
Ho(1 - 2qo$ 

( k =  -1) I (49) 

(k = -1) J 
(k = 0) 1 (50) 

(k = 0) 
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(1 - cos 2<) cqO R =  
H0(2q0 - 1)3'2 

(k = 1) J 
The foregoing equations for  to - t and R a r e  not too useful in that a knowledge 

of one of the variables is required in order to determine the other. In the case of R 
for k = &l, the equations a r e  transcendental as 5 is a function of R. However, all the 
foregoing equations may be expressed as a function of the red shift and acceleration 
parameters through the use of the relation 3 = 1 + z and equation (8). When using 
equation (8) for the A = 0 case, uo is se t  equal to go. 

R 

The zero-density model.- In the case of the zero-density model universe, equa- 
tion (10) becomes 

dR 
1/2 

[R,2(q0 + 1) - 4.Rq 
to  - t = Ho 

The integration of equation (52) gives the general expression for to - t for  the zero- 
density model which is 

Figure 10 compares to - t for  the zero-density model universe with the to - t for the 
general case which is given by equation (43). As can be seen, there is excellent agree- 
ment between the two solutions where Do = 0.08 and 0 and q, = 0.5 and 2.5. 

The scale factor R is obtained by inverting equation (53) so that R is given as 
a function of to - t. This inversion gives for the zero-density model 

and is a general expression for R for the zero-density model universe. Figure 11 
compares solutions for R for the exact and zero-density models and the agreement is 
poor. If a modified zero-density scale factor R* is adopted 

(R?)ecR) 
R* = (Ro)d 
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Figure 10.- Differences in Ho(to - t) for t he  exact f in i te  density and zero-density 
models of t he  universe. (Eqs. (43) and (53).) 

as was done for w and S(w), as shown in figure 12, there is very good agreement 
between the exact and zero-density modified scale factors. 

The zero-density model universe and the A = 0 model universe have a common 
model and that model is for q, = 0. The restrictions on the use of w* in the zero- 
density model apply to the use of R* when it is used to determine to - t and R. 

Approximate solutions for to - t and R.- The approximate solutions for to - t 
and R make use of the same approximation that was used for obtaining the approxi- 
mate solutions for w, that is, the te rm 20,z3 makes a negligible contribution to the 
integral in  equation (43). When the term 2u0z3 is assumed to make a negligible con- 
tribution to the cubic in equation (43), equation (43) becomes 

- .  

to - t = Ho-l loZ dz 

( l + z )  3 u 0 + q 0 + 1 z  ) 2  + 2 q  ( O )  + l z + l  y2 cc (55) 
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Figure 11.- Differences in HoR for the  exact f in i te  density and zero-density 
models of t h e  universe. (Eqs. (43) and (54.1 
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.9x10-8 

Exact, uo = 0.08 

I \ -  0 Modified zero density, uo=O 

"t 
Figure 12.- Differences in HoR or HoR" for the exact finite density and 

modified zero-density models of the universe. (Eqs. (53) and (54bI.) 
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and integrates to 

As shown by figure 13, equation (56) is an excellent approximation for to - t given by 
the exact expression (eq. (43)). Inversion of equation (56) gives the expression for R 
which is 

As in the case of w,  to - t and R obtained from this approximation a r e  not 
applicable to the A = 0 models. For negative values of q,, the results obtained from 
the approximate solution a r e  not as good as those for q, > 0. The approximation 
becomes worse when q, = -(1 + 3u0), and the approximation improves when go 

becomes more negative. 

40 

Exact, uo = 0.08 
Approximate, c0= 0.08 

I - I I I I I 
4 .8 1.2 I6  2.0 2.4 2.8 

z 

Figure 13.- Differences in  Ho(to - t) for  t he  exact and approximate f in i te  density 
models of t he  universe. (Eqs. (56) and (43).) 
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Charts that show these combinations of cro and q, that give a difference between 
the exact and approximate solutions of 2 percent and less  or 4 percent and l e s s  a r e  pre- 
sented in appendix A. 

Time Since the Beginning of Expansion 

Equation (44) gives the time since the beginning of expansion for those models of 
the universe that have R = 0 at t = 0 and excludes models 10, 11, and 14 of table I. 
If the proper initial value of R at t = 0 is used for the lower limit, a time since the 
beginning of expansion can be calculated for  models 11 and 14. In the case of model 10, 
time since the beginning of expansion is meaningless because this model is a static 
model and there is no expansion. 

Equation (44) is a definite integral, and it can be easily integrated for the zero- 
density model and the A = 0 model, the significant family of models when two roots a r e  
equal. In the case of the approximate model, equation (44) takes the form 

which can also be easily integrated in te rms  of simple functions. 

Calculations of the time since the beginning of expansion are mainly useful in deter- 
mining whether the time scale inequality which is 

Time since beginning of expansion 2 Age of oldest stars (59) 

is satisfied for a given model of the universe. Equation (59) is meaningful only when a 
model starts from the point R = t = 0. At this point it is assumed that no stars and 
galaxies existed and that they were formed shortly after expansion started. Thus, time 
since the beginning of expansion has significance in  these models. However, for 
models 11 and 14 that have open negative time axes and finite scale factors, equation (44) 
loses its meaning because stars and galaxies could have existed before expansion started. 

DISCUSSION 

Four simple models of the universe have been derived and equations that relate 
observation and theory have been obtained for each model. Of the four simple models, 
only two are significant because fewer restrictions are incorporated. These models are 
the zero-density and approximate model. Both of these models allow all values of k 
and A and if the density is on the order of that predicted by observation or less 

( P  g/cm3 or less), then these models a r e  highly useful. The other two models, 
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Baum's data (fig. 14) contain six color 
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and because Baum's data appeared to 
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calculations are given in table 11. 

TABLE IT.- RESULTS OF CALCULATIONS 

1 Model used 

Exact 
Approximate 

Zero density 

Expansion 

Equation 

(14), (21a), and (23) 
(14) and (41) 

~ 

(141, =q , ( 2 1 4 ,  (301, (311, and (32 

(14) and (36) 

(42) 

0 0  

3.029 
3.20 
1.56 

0 

___ -  

q0 
0.0077 
-.0059 
1.56 

2.934 

1.39 

k 

1 
1 
1 

-1 

- 1* 

A 

> O  
> O  

0 

< O  

<O* 

Model (Table I: 

9 (Le Maitre) 
9 (Le Maitre) 
8 (Oscillating) 

1 (Oscillating) 

1 (Oscillating) 

*Equations (8) and (9) were used to compute k, and A for this model at a value 
of 0.45 (po = 10-30 g/cm3) was used. 
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The results presented in table I1 a r e  the initial results of a study of the problem of 
determining oo and go from observational data and a re  results for a very limited 
amount of data. 
(expansion model) or a restrictive assumption made (A = 0 and zero-density models) 
disagree with the model characteristics that a r e  indicated when the exact red- shift- 
magnitude relation is used. However, the oo and go predicted by the approximate 
model are close to those predicted by the exact model. This result is not surprjsing 
since the oo and go obtained through the use of the exact model lie in a region where 
the approximate model is a good approximation for the exact model if  an e r r o r  between 
2 and 4 percent in the elliptic integral is tolerable. Both the exact and approximate 
models predict uo on the order of 3.0; this prediction represents a density that is about 
20 times higher than the maximum density based on observation obtained by Oort (ref. 13) 
and about 60 times Abell's best estimate (ref. 12). If the trends established by these 
initial results a r e  substantiated by further calculations with more extensive data, only 
the exact and approximate models should be used for the analysis of observational data. 
Solheim's results (ref. 23) appear to confirm these results. 

The model characteristics that a r e  indicated when density is neglected 

The results presented in table I1 have been plotted in figure 15 with the data super- 
imposed on the curves. 
z covered by data, 0.004 to 0.460 (that is, log z = -2.398 to log z = 0.361), all the 

The most striking fact about this figure is that for the range of 

4- 

0- 

-4- 

78 

Log z -1.2- 

-1.6- 

-2.0 

-2.4 

-2.8 
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- 

- 

- 
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mC 

Figure 15.- Comparison of several model universes wi th  red sh i f t  z and apparent 
magnitude mc for Baum's eight clusters from reference 3. 
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models of table I1 appear to f i t  the data equally well. Above z = 0.5 (log z = -0.30103), 
the various models diverge. Present data for galaxies do not extend above z = 0.5, and. 
data with z > 0.5, based on the evidence of figure 15, a r e  required to determine a model 
of the universe. 

Quasi-stellar radio sources (see ref. 24) have measured red shifts greater than 
0.5; however, these sources were not used to extend the data for  galaxies used in the 
calculations because (1) the cause of the red shift is in doubt and (2) the intrinsic lumi- 
nosity of these sources appears to vary widely and is different from that of the galaxies. 
The use  of the red-shift-magnitude relation requires the assumption that all sources 
have about the same intrinsic luminosity. Additional data from quasi- stellar radio 
sources published since reference 24 have not clarified the situation. 

CONCLUDING REMARKS 

Under the assumption that general relativity is the theory of gravitation that best 
represents the observed universe, relativistic models that a r e  both isotropic and homo- 
geneous have been studied. In addition to the assumptions of isotropy and homogeneity, 
it was necessary to assume that pressure te rms  could be neglected with respect to den- 
sity te rms  in order to solve the field equations that describe the universe. 

The solutions for the scale factor and radial metric variable w,  which a r e  gen- 
erally elliptic integrals, have been studied for the exact case and several simplified 
cases. In one of the simplified cases, the integrals for the scale factor and radial metric 
variable have two equal roots and although both integrals can be integrated by simple 
functions, the condition of two equal roots imposes too severe a restriction on the pos- 
sible values of the density and acceleration parameters for the solutions with two equal 
roots to be of more than academic interest. Models with the cosmical constant equal 
to zero a r e  contained in the case of two equal roots and the same remarks apply. In 
addition, the cosmical constant is a constant of integration in  the field equations and 
should not be arbitrarily set to zero. Simplified models that have two equal roots should 
not be used unless the analysis of observational data with a more general model indicates 
that the special conditions for the integrals for the scale factor and radial metric variable 
to have two equal roots exist. 

Zero-density model universes and an approximate model in which the cubic term 
was assumed to make a negligible contribution to the integral in the definition of the 
radial metric variable w were also studied to determine their applicability to the anal- 
ys i s  of observational data. 

A computing program based on the method of differential corrections and the data 
for Baum's eight clusters of galaxies was used to evaluate the exact, approximate, A = 0, 



zero-density, and expansion models. Both the exact and approximate models predict a 
high-density universe and the acceleration parameter for these models is not in agree- 
ment with that determined by the A = 0, zero-density, and expansion models. Because 
of the high density and the lack of agreement between the values of the acceleration 
parameter determined by the various models, except in the case of the exact and approxi- 
mate models which predict an almost zero value for the acceleration parameter, it was 
concluded that only the exact and approximate models should be used for the analysis 
of observational data. The approximate model should be used only if  an e r r o r  between 
2 and 4 percent in the integral in the radial metric variable o is considered tolerable. 

Further study of the results obtained from the computing program showed that in 
the range of red shift covered by present data, all the models used appeared to fit the 
data equally well, and data that include red shifts greater than one-half a r e  required to 
define a model of the observed universe. 

Although the data for quasi-stellar radio sources fall in the required range of red 
shift, it was pointed out that, as yet, these data a r e  not considered in the problem of 
determining a model of the universe because of the uncertainty as to the cause of the red 
shift and because the intrinsic luminosity of quasi-stellar radio sources shows a wide 
variation and is different from that of galaxies. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Station, Hampton, Va., September 21, 1967, 
188-41-01-01-23. 

33 



APPENDIX A 

DETERMINATION OF REGIONS OF APPLICABILITY 

OF THE APPROXIMATE MODEL 

The region of uo,qo over which the approximate model is applicable is deter- 
mined for e r r o r s  of 2 and 4 percent introduced through use of the approximate model. 
The only difference between the approximate and exact models is the approximation of 
equation (23) by equation (39) for  w and the approximation of equation (48) by equa- 
tion (55). These equations were set up as inequalities, and a high-speed digital computer 
was used to determine uo and qo as a function of z. The following inequalities were 
used: 

for w and 

for to - t. In these equations, I(z) indicates the integral 
equations from which it came. Two values of the e r r o r  e ,  

and the subscript denotes the 
0.02 and 0.04, were used. 

The results of the calculations a r e  presented in figure 16 for w and in figure 17 
for to - t. When E was 4 percent, it was found that the e r r o r  for z = 0.5 was always 
less  than 4 percent for the range of oo and q, considered; thus, no boundary for 
z = 0.5 is shown in figures 16 and 17, the region between the axis and the lines of con- 
stant z is usable, and a combination of oo and q, that falls on or inside of a line of 
constant z is usable. For instance, if oo and go fall on the z = 1.0 line, the 
approximate model could be used to determine uo and qo out to z = 1.0. The maxi- 
mum e r r o r  would occur on the z = 1.0 line; if oo and q, fall inside this line, the 
e r r o r  is less. 

In practice, the charts would be used as follows. The approximate model would be 
used to determine oo and go, and then the determined oo and qo and the maximum 
z used would be entered into the chart to determine whether the approximation is valid. 
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z = 2.5 2.0 

(a) E = 0.02. 

I. 5 

-2' 1 I I I I I 
0 2 4 6 8 I O  12 

ab 

(b) E = 0.04. 

Figure 16.- Regions i n  which the approximate models give valid solutions for 0. The useful 
region is between the qo axis and lines of constant z. (Eq. (Al).) 
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(a) E = 0.02. 
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(b) E = 0.04. 

Figure 17.- Regions in which the approximate model 
gives valid solutions for t,, - t. The useful region 
i s  between the qo axis and lines of constant z. 
(Eq. (A2).) 
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APPENDIX I3 

SYMBOLS 

a = 7.564 x 

a,b roots for cubic with two equal roots 

C C = 5 log10 H + M o  - 5 
0 

speed of light in vacuo 

distance by measuring rod, R,S(w) 

luminosity distance 

curvature scalar 

contracted Riemann-Christoffel tensor 

function 

universal constant of gravitation 

metrical tensor 

Hubble parameter 

inverted function 

integral 

red- shift correction 

curvature constant 

absolute magnitude of equivalent local source 

apparent magnitude 

corrected apparent magnitude 
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APPENDIX B 

number of like sources brighter than a given magnitude 

number of like sources per'unit volume 

total pressure 

number of square degrees in celestial sphere 

acceleration parameter 

scale factor that describes geometric history of universe 

roots of cubic in equation (10) 

value of R associated with Re 

value of R for modified zero-density model 

coordinate in metric subspace 

function of w that depends on curvature of space 

value of S(w) for modified zero-density model 

time along line element 

radiation temperature, OK; also time since beginning of expansion 

time 

present time 

random radial velocity 

coordinates 
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APPENDIX B 

red shift 

dummy roots of cubic 

error 

linear diameter; also dummy variable 

coordinate in metric subspace 

cosmical constant 

critical value of cosmical constant 

function of radial metric variable r 

material density 

present material density 

density par  am et e r  

angular diameter; also coordinate in metric subspace 

function of radial metric variable 

value of w for modified zero-density model 

Subscripts: 

e,d exact and zero-density models 

0 present values 

P,V tensor indices (0, 1, 2, and 3) 

Dots over symbols denote differentiation with respect to time. 
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